14 research outputs found

    International experiences in early career academic development

    No full text
    Highlights on the difference in how PhD researchers in Italy and UK countries are supported to pursue the teaching side of academi

    Solid microcrystalline dispersion films as a new strategy to improve the dissolution rate of poorly water soluble drugs: A case study using olanzapine

    Get PDF
    In this study, we evaluate the dissolution rate enhancement of solid microcrystalline dispersion (SMD) films of olanzapine (OLZ) formulated with four water-soluble polymers namely poly(N-vinylpyrrolidone) (PVP), poloxamer 188 (P188), poloxamer 407 (P407) and Soluplus®(SLP). Prepared formulations were characterised to determine particle size, morphology, hydrogen bonding interactions, thermal characteristics as well as in vitro dissolution studies conducted under sink conditions (pH 6.8). Particle size of OLZ in all formulations ranged between 42 and 58 μm. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC) and Hot-Stage Microscopy (HSM) studies confirmed OLZ was well maintained in its crystalline state during the formulation process. In vitro dissolution studies showed immediate drug release from all formulation when compared to the drug alone. The greatest increase in in vitro dissolution rate was observed in formulations containing P188 most likely due to its enhanced hydrophilic and surfactant properties compared to the other agents used. Overall, this study successfully generated OLZ loaded SMD films with improved in vitro dissolution rates which is highly likely to result in improved oral bioavailability in vivo

    3d-printed solid dispersion drug products

    Get PDF
    With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs—fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)—were impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal drug loading as well as other influences such as the physicochemical and mechanical properties of the resultant filaments were investigated prior to development of the resultant drug products. Key outcomes of this work included the improvement of filament drug loading by one- to threefold due to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro dissolution characteristic

    Influence of Polyvinyl Alcohol (PVA) on PVA-Poly-N-hydroxyethyl-aspartamide (PVA-PHEA) Microcrystalline Solid Dispersion Films

    Get PDF
    This study was conducted to formulate buccal films consisting of polyvinyl alcohol (PVA) and poly-N-hydroxyethyl-aspartamide (PHEA), to improve the dissolution of the drug through the oral mucosa. Ibuprofen sodium salt was used as a model drug, and the buccal film was expected to enhance its dissolution rate. Two different concentrations of PVA (5% w/v and 7.5% w/v) were used. Solvent casting was used to prepare films, where a solution consisting of drug and polymer was cast and allowed to dry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to investigate the properties of films. In vitro dissolution studies were also conducted to investigate drug release. SEM studies showed that films containing a higher concentration of PVA had larger particles in microrange. FTIR studies confirmed the presence of the drug in films and indicated that ibuprofen sodium did not react with polymers. DSC studies confirmed the crystalline form of ibuprofen sodium when incorporated within films. In vitro dissolution studies found that the dissolution percentage of ibuprofen sodium alone was increased when incorporated within the film from 59 to 74%. This study led to the development of solid microcrystalline dispersion as a buccal film with a faster dissolution rate than the drug alone overcoming problem of poor solubility

    Spray-Drying, Solvent-Casting and Freeze-Drying Techniques: a Comparative Study on their Suitability for the Enhancement of Drug Dissolution Rates

    No full text
    Purpose Solid dispersions (SDs) represent the most common formulation technique used to increase the dissolution rate of a drug. In this work, the three most common methods used to prepare SDs, namely spray-drying, solvent-casting and freezedrying, have been compared in order to investigate their effect on increasing drug dissolution rate. Methods Three formulation strategies were used to prepare a polymer mixture of polyvinyl-alcohol (PVA) and maltodextrin (MDX) as SDs loaded with the following three model drugs, all of which possess a poor solubility: Olanzapine, Dexamethasone, and Triamcinolone acetonide. The SDs obtained were analysed and compared in terms of drug particle size, drug-loading capacity, surface homogeneity, and dissolution profile enhancement. Physical-chemical characterisation was conducted on pure drugs, as well as the formulations made, by way of thermal analysis and infrared spectroscopy. Result The polymers used were able to increase drug saturation solubility. The formulation strategies affected the drug particle size, with the solvent-casting method resulting inmore homogenous particle size and distribution when compared to the other methods. The greatest enhancement in the drug dissolution rate was seen for all the samples prepared using the solvent-casting method. Conclusion All of the methods used were able to increase the dissolution rate of the pure drugs alone, however, the solventcasting method produced SDs with a higher surface homogeneity, drug incorporation capability, and faster dissolution profile than the other techniques

    Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying

    No full text
    The term\u201cmulticomponent solid dispersion\u201dis widely used in recent literature to describe solid formulationsconsisting of a special excipient's mixture and active moleculesfinely dispersed. However, this term has not yetbeen defined. In this review, we aimed to improve the definition of multicomponent solid dispersions as a newgeneration of solid dispersions capable to improve both formulation issues and the therapeutic effect of thefinaldosage form. As it is well-known the use of solid dispersions to improve drug dissolution rate and solubility, thisreview describes thefield of solid dispersions as well as the formulation strategies available for their production.In particular, the review highlights the use of the spray-drying technique and the benefits provided by thismethod in the manufacturing of multicomponent solid dispersion

    Engineering of Nanofibrous Amorphous and Crystalline Solid Dispersions for Oral Drug Delivery

    Get PDF
    Poor aqueous solubility (<0.1 mg/mL) affects a significant number of drugs currently on the market or under development. Several formulation strategies including salt formation, particle size reduction, and solid dispersion approaches have been employed with varied success. In this review, we focus primarily on the emerging trends in the generation of amorphous and micro/nano-crystalline solid dispersions using electrospinning to improve the dissolution rate and in turn the bioavailability of poorly water-soluble drugs. Electrospinning is a simple but versatile process that utilizes electrostatic forces to generate polymeric fibers and has been used for over 100 years to generate synthetic fibers. We discuss the various electrospinning studies and spinneret types that have been used to generate amorphous and crystalline solid dispersions
    corecore